Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

نویسندگان

  • Ji-Sen Li
  • Yu Wang
  • Chun-Hui Liu
  • Shun-Li Li
  • Yu-Guang Wang
  • Long-Zhang Dong
  • Zhi-Hui Dai
  • Ya-Fei Li
  • Ya-Qian Lan
چکیده

Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide.

A novel electrocatalyst of layered MoS2 supported on reduced graphene oxide (RGO) decorated with nano-sized tungsten carbide (WC) shows an enhanced catalytic performance in the hydrogen evolution reaction, which could be attributed to the presence of a conductive and electrocatalytically-active nano-WC dispersant and the positive synergistic effect between nano-WC/RGO and layered MoS2.

متن کامل

Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction.

In this work, we developed a general two-step method to prepare molybdenum carbide (Mo2C) nanoparticles stabilized by a carbon layer on reduced graphene oxide (RGO) sheets. The Mo2C-RGO hybrid showed excellent performance, which is attributed to the intimate interactions between Mo2C and graphene as well as the outer protection of the carbon layer.

متن کامل

Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution.

The layered ternary chalcogenide, palladium phosphorous sulphide (PdPS), and its composite with reduced graphene oxide are shown to be efficient hydrogen evolution electrocatalysts. The Tafel slope and the exchange current density values associated with hydrogen evolution reaction are determined to be 46 mV dec(-1) and 1.4 × 10(-4) A cm(-2) respectively.

متن کامل

Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production

Electrochemical water splitting has been considered as a promising approach to produce clean and sustainable hydrogen fuel. However, the lack of high-performance and low-cost electrocatalysts for hydrogen evolution reaction hinders the large-scale application. As a new class of porous materials with tunable structure and composition, metal-organic frameworks have been considered as promising ca...

متن کامل

Ultrathin PdTe nanowires anchoring reduced graphene oxide cathodes for efficient hydrogen evolution reaction.

The design and synthesis of efficient electrocatalysts for hydrogen evolution reaction under all pH conditions is extremely desirable but still remains a challenge. Here a facile method to decorate PdTe nanowires on reduced graphene oxide nanosheets (PdTe NWs/rGO) has been developed. As a robust integrated 2D hydrogen-evolving cathode catalyst, the Pd3.02Te NWs/rGO shows a low onset potential o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016